
2019-09-20

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

While loops

2
While loops

Outline

• In this lesson, we will:

– Describe looping statements and their implementation in C++

– Introduce non-terminating loops

– Implement two versions examining the Collatz conjecture

– See how to limit the number of iterations of a loop

– Implement the factorial function

– Walk through the steps of converting an algorithm described in
English to a program

• We will use the greatest-common divisor algorithm

3
While loops

Looping statements

• We previously looked at:

– Executing blocks of statements

– Conditionally executing a block of statements based on a Boolean-
valued condition

• We will now look at the C++ implementation of a looping statement

4
While loops

Looping statements

• We implemented conditional statements based on a condition being
evaluated to TRUE

if (condition) {

// Do something...

} else {

// Do something else...

}

2019-09-20

2

5
While loops

Looping statements

• A looping statement is implemented based on repeatedly executing a
block of statements so long as a condition is TRUE

while (Boolean-valued condition) {

The looped block of statements

- to be executed as long as the

condition is 'true'

}

// Continue executing here as soon as the

// condition evaluates to 'false'

6
While loops

Looping statements

• Because this state block is repeatedly executed (i.e., looped) while a
condition is TRUE, we refer to such a statement as a “while loop”

while (Boolean-valued condition) {

The looped block of statements

- to be executed as long as the

condition is 'true'

}

// Continue executing here as soon as the

// condition evaluates to 'false'

7
While loops

Looping statements

• The easiest while loop is one that does so forever:

#include <iostream>

int main();

int main() {

// @non-terminating@

while (true) {

std::cout << "Hello world!" << std::endl;

}

return 0;

}

8
While loops

Looping statements

• Such non-terminating while loops are used in real-time systems that
respond to external events:

int main();

int main() {

// @non-terminating@

while (true) {

// Wait for an event

// Respond to that event

}

// Technically, we never get here

return 0;

}

2019-09-20

3

9
While loops

Collatz conjecture

• Normally, however, the condition is affected by the action of the
looped block of statements

• We’ll look at one example based on an interesting mathematical
quandary:

– The Collatz conjecture says that if you start with a number a, do the
following:

• If it is odd, multiply it by three and add one

• If it is even, divide it by two

– The Collatz conjecture says that this sequence will ultimately reduce
to the cycle 1, 4, 2, 1, 4, 2, 1, …

10
While loops

Collatz conjecture

• We can try this with any number of initial values

1

2, 1

3, 10, 5, 16, 8, 4, 2, 1

4, 2, 1

5, 16, 8, 4, 2, 1

6, 3, 10, 5, 16, 8, 4, 2, 1

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

8, 4, 2, 1

9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

10, 5, 16, 8, 4, 2, 1

11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

12, 6, 3, 10, 5, 16, 8, 4, 2, 1

11
While loops

Collatz conjecture

• Write a function collatz_print(…) that takes a positive integer a

and prints out the sequence of integers until it reaches one, in which
case, terminate with "..."

1. Print “a, ”

2. If a ≠ 1,

a. If a is even,

i. Divide a by two,

ii. Otherwise, set a ← 3a + 1

b. Print “a, ”

c. Go to Step 2.

3. Print “…”

12
While loops

Collatz conjecture

• An implementation of this algorithm is:
void collatz_print(unsigned int a);

void collatz_print(unsigned int a) {

std::cout << a << ", ";

while (a != 1) {

if ((a % 2) == 0) {

a /= 2;

} else {

a = 3*a + 1;

}

std::cout << a << ", ";

}

std::cout << "..." << std::endl;

}

Question: What happens if
the argument passed is 0?

2019-09-20

4

13
While loops

Collatz conjecture

• Try it yourself:
#include <iostream>

#include <cassert>

// Function declarations

void collatz_print(unsigned int a);

// Function definitions

void collatz_print(unsigned int a) {

assert(a != 0);

std::cout << a << ", ";

while (a != 1) {

if ((a % 2) == 0) {

a /= 2;

} else {

a = 3*a + 1;

}

std::cout << a << ", ";

}

std::cout << "..." << std::endl;

}

int main() {

collatz_print(1970);

return 0;

}

14
While loops

Collatz conjecture

• Mathematicians aren’t so interested in the actual sequences, but
rather the number of terms in the sequence until you get to 1

– For example,
27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137,

412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445,

1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438,

719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154,

3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92,

46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

171, 514, 257, 772, 386, 193, 580, 290, 145, 436, 218, 109, 328, 164, 82, 41, 124, 62, 31, 94, 47,

142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466,

233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251,

754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619,

4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154,

577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160,

80, 40, 20, 10, 5, 16, 8, 4, 2, 1

15
While loops

Collatz conjecture

• Write a function collatz(…) that takes a positive integer n and
returns the number of steps required until we get to one:

unsigned int collatz(unsigned int a);

unsigned int collatz(unsigned int a) {

unsigned int num_iterations{0};

while (a != 1) {

++num_iterations;

if ((a % 2) == 0) {

a /= 2;

} else {

a = 3*a + 1;

}

}

return num_iterations;

}

16
While loops

Collatz conjecture

• Notice the function declarations:

void collatz_print(unsigned int n);

unsigned int collatz(unsigned int n);

• Could we not just give the same name?

– After all, we had other functions with the same name

• Problem: The C++ compiler cannot choose based on return type
only

– The compiler only chooses based on the types of any arguments

– If two functions have identical parameter types, they must have
different names

2019-09-20

5

17
While loops

• We could create a second loop that queries the user for an argument:
#include <iostream>

int main();

void collatz_print(unsigned int n);

int main() {

bool keep_going{true};

while (keep_going) {

unsigned int n{};

std::cout << "Enter a positive integer ('0' to quit): ";

std::cin >> n;

if (n == 0) {

keep_going = false;

} else {

collatz_print(n);

}

}

return 0;

}

Collatz conjecture

18
While loops

• Problem: what happens if we pass our function the argument 0?

– While the specification may require the argument to be greater than
zero, you must explicitly check:
unsigned int collatz(unsigned int n) {

assert(n >= 1);

unsigned int num_iterations{0};

// Other code...

return num_iterations;

}

unsigned int collatz(unsigned int n) {

if (n == 0) {

return 0;

} else {

unsigned int num_iterations{0};

// Other code...

return num_iterations;

}

}

Collatz conjecture

19
While loops

• Suppose we want a loop to run exactly n times

– Track of how often the loop has executed with a local variable niterations

1. Initialize a local variable niterations ← 0

2. As long as niterations < n,

a. execute the block of statements associated with the loop,

b. increment niterations, and

c. return to Step 2.

Counting

20
While loops

• Here is a while loop that executes a fixed number of times

– This assumes the value of maxiterations is never changed…

unsigned int num_iterations{0};

while (num_iterations < max_iterations) {

// Do something...

++num_iterations;

}

• Once num_iterations == max_iterations, we have executed the
block of statements the required number of times

Counting

2019-09-20

6

21
While loops

• Suppose we want to calculate n!

– Because 0! = 1! = 1, we could start with this value, and then keep
multiplying this by 2, then 3, and so on up until n:

1. Initialize a result r ← 1 and a variable k ← 2

2. If k ≤ n,

a. multiply r by k: r ← kr,

b. increment k ← k + 1, and

c. return to Step 2.

3. Return r

Factorial function

22
While loops

• Here is an implementation of the factorial function:

unsigned int factorial(unsigned int n);

unsigned int factorial(unsigned int n) {

unsigned int result{1};

unsigned int k{2};

while (k <= n) {

result *= k;

++k;

}

return result;

}

Factorial function

23
While loops

How to design a while loop

• Suppose you are attempting to implement an algorithm where you
repeated apply a number of steps

– How do you make the transition from manual to programmatic?

• Recommendation:

– Do the algorithm on paper—in full

– Examine the steps you took, and determine:

• What steps were repeated?

• What condition caused you to stop repeating the steps?

24
While loops

• From secondary school, you saw that the algorithm for calculating
the greatest common denominator (gcd)

– You are asked to find the gcd of 8008 and 8085

– You first note that 8085 > 8008

– Next, you find that 8085 ÷ 8008 equals 1 with a remainder of 77

– Next, you find that 8008 ÷ 77 equals 104 with a remainder of 0

– From this, you are told that the gcd is 77

The greatest-common divisor

2019-09-20

7

25
While loops

• Let’s try again:

– You are asked to find the gcd of 1583890 and 85800

– You first note that 1583890 > 85800

– Next, you find that 1583890 ÷ 85800 equals 18 with a remainder of 39490

– Next, you find that 85800 ÷ 39490 equals 2 with a remainder of 6820

– Next, you find that 39490 ÷ 6820 equals 5 with a remainder of 5390

– Next, you find that 6820 ÷ 5390 equals 1 with a remainder of 1430

– Next, you find that 5390 ÷ 1430 equals 3 with a remainder of 1100

– Next, you find that 1430 ÷ 1100 equals 1 with a remainder of 330

– Next, you find that 1100 ÷ 330 equals 3 with a remainder of 110

– Next, you find that 330 ÷ 110 equals 3 with a remainder of 0

– From this, you are told that the gcd is 110

The greatest-common divisor

26
While loops

• At each step, we had a pair of numbers

– Call the m and n

• For the initial step, we set

– the larger number to be m, and

– the smaller number to be n

• After that, we repeatedly

– calculated the remainder r when dividing m ÷ n, and

– if r = 0, we are done, and n is the gcd,

– otherwise, we repeat with the pair n and r

• That is, we set m ← n and then we set n ← r

The greatest-common divisor

Remember: when you calculate m ÷ n,
the remainder r must always satisfy n > r ≥ 0

27
While loops

• Let’s look at the first steps:

– At each step, we had a pair of numbers

• Call them m and n

– For the initial step, we set

• the larger number to be m, and

• the smaller number to be n

• Problem: We are doing something if the condition is false:

– We execute a block of statements when m ≥ n is FALSE

• Let’s use the complementary condition:

– This is equivalent to executing the statements when m < n is TRUE

The greatest-common divisor

28
While loops

• Thus, we swap the parameters m and n if m < n

The greatest-common divisor

2019-09-20

8

29
While loops

• The next steps we perform are that we

– calculate the remainder r, and

– if r = 0, we are done, and n is the gcd,

– otherwise, we repeat with the pair n and r

• That is, we set m ← n and then we set n ← r

• Problem: this is not in the form a while loop

The greatest-common divisor

30
While loops

• First, a while loop must return to the condition

– We can repeat the first statement at the end

The greatest-common divisor

31
While loops

• Second, the condition for looping must evaluate to TRUE

– Continuing while r = 0 is FALSE is equivalent to
continuing while r ≠ 0 is TRUE

The greatest-common divisor

32
While loops

• Thus, our final flow chart is:

The greatest-common divisor

2019-09-20

9

33
While loops

• Programming this:
unsigned int gcd(unsigned int m, unsigned int n) {

The greatest-common divisor

34
While loops

• Programming this:
unsigned int gcd(unsigned int m, unsigned int n) {

if (m < n) {

unsigned int tmp{m};

m = n;

n = tmp;

}

The greatest-common divisor

35
While loops

• Programming this:
unsigned int gcd(unsigned int m, unsigned int n) {

if (m < n) {

unsigned int tmp{m};

m = n;

n = tmp;

}

unsigned int r{m % n};

The greatest-common divisor

36
While loops

• Programming this:
unsigned int gcd(unsigned int m, unsigned int n) {

if (m < n) {

unsigned int tmp{m};

m = n;

n = tmp;

}

unsigned int r{m % n};

while (r != 0) {

}

The greatest-common divisor

2019-09-20

10

37
While loops

• Programming this:
unsigned int gcd(unsigned int m, unsigned int n) {

if (m < n) {

unsigned int tmp{m};

m = n;

n = tmp;

}

unsigned int r{m % n};

while (r != 0) {

m = n;

n = r;

r = m % n;

}

The greatest-common divisor

38
While loops

• Programming this:
unsigned int gcd(unsigned int m, unsigned int n) {

if (m < n) {

unsigned int tmp{m};

m = n;

n = tmp;

}

unsigned int r{m % n};

while (r != 0) {

m = n;

n = r;

r = m % n;

}

return n;

}

The greatest-common divisor

39
While loops

• Question:

– What do you do if you accidentally execute a program that has an
infinite loop?

• Solution:

– In Eclipse, there is a stop button that becomes active when a
program is executing

– Other ides will have similar features

– At the console, press Ctrl-C

Infinite loop?

40
While loops

Summary

• Following this lesson, you now

– Understand how to implement while loops in C++

– Understand how to limit the number of times the corresponding
statement block is executed

– Seen how to implement various functions requiring looping
statements:

• The Collatz conjecture

• The factorial function

– Understand how to convert a description of an algorithm to one that
you can program

• The example we used was the greatest-common divisor

– Know how to terminate a program in an infinite loop

2019-09-20

11

41
While loops

References

[1] Wikipedia

https://en.wikipedia.org/wiki/While_loop

[2] cplusplus.com

http://www.cplusplus.com/doc/tutorial/control/

[3] tutorialspoint

https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm

42
While loops

Acknowledgments

Proof read by Dr. Thomas McConkey and Charlie Liu.

43
While loops

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

44
While loops

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

https://en.wikipedia.org/wiki/While_loop
http://www.cplusplus.com/doc/tutorial/control/
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm

